
Homotopy Type Theory
Equality as Equality

Dr Marco Benini

marco.benini@uninsubria.it

Dipartimento di Scienza e Alta Tecnologia
Università degli Studi dell’Insubria

26th September 2023

marco.benini@uninsubria.it

Introduction

In HoTT there are two notions of equality:
■ judgemental equality Γ⊢ a ≡ b :T
■ propositional equality a =T b

The former models conversion
The latter is
■ the identity type over the type T
■ the space of paths from a to b in the space T

Are these really equalities?

(2)

Equivalence relation

Equality is an equivalence relation

MLTT, on which HoTT is based on, contains

Γ⊢ a :A
≡−refl

Γ⊢ a ≡ a :A
Γ⊢ a ≡ b :A

≡−sym
Γ⊢ b ≡ a :A

Γ⊢ a ≡ b :A Γ⊢ b ≡ c :A
≡−trans

Γ⊢ a ≡ c :A

Hence, judgemental equality is an equivalence relation. . .
. . . between regular judgements!

(3)

Equivalence relation

The identity type is defined by

Γ ctx
=−form

Γ⊢= :ΠA :Ui ,a :A,b :A.Ui

Γ ctx
=−intro

Γ⊢ refl :ΠA :Ui ,a :A.a =A a

Γ ctx
=−elim

Γ⊢ ind= :ΠA :Ui .

ΠP : (Πx :A,y :A.x =A y →Ui).

Πc1 : (Πx :A.P x x (reflAx)).

Πa :A,b :A.Πe :a =A b.P ab e

Γ⊢A :Ui

Γ⊢ a :A
Γ⊢P :Πx :A,y :A.x =A y →Ui

Γ⊢ c1 :Πx :A.P x x (reflAx)
=−comp

Γ⊢ ind=AP c1 aa (reflAa)≡ c1 a :P aa (reflAa)

(4)

Equivalence relation

Lemma 2.1 (Path inversion)
For every type A and every x ,y :A there is a function (_)−1 :x =A y → y =A x
such that refl−1

x ≡ reflx .

Proof.
Define P :≡λx :A,y :A,p :x =A y .y =A x and c1 :≡λx :A.reflx .
Thus, (_)−1 :≡ ind=AP c1 x y .
Hence refl−1

x ≡ ind=AP c1 x x reflx ≡ c1 x ≡ reflx .

Generally, type checking is implicit in proofs

(5)

Equivalence relation

Lemma 2.2 (Path composition)
For every type A and every x ,y ,z :A there is a function

_ �_ :x = y → y = z → x = z

such that reflx � reflx ≡ reflx for any x :A.
Proof.

D :≡λx :A,y :A,p :x =A y .Πz :A,q :y =A z .x =A z
E :≡λx :A,z :A,q :x =A z .x =A z
e :≡λx :A.reflx

d :≡λx :A. ind=AE e
f :≡λA :Ui ,x :A,y :A,z :A,p :x =A y ,q :y =A z . ind=AD d x y p z q

Then � :≡ f Ax y z is the sought term.
The judgemental equality reflx � reflx ≡ reflx follows by =−comp.

(6)

Equivalence relation

Equality is an equivalence relation

By =−intro, =A is reflexive
Lemma 2.1 tells that =A is symmetric
Lemma 2.2 tells that =A is transitive
Hence =A is an equivalence relation between terms in the same type A

(7)

Congruence

Equality is a congruence

It suffices to show that equality is a congruence w.r.t. the structural
constructors: application, abstraction, function space formation:
1. if f = g then f a = g a
2. if a = b then f a = f b
3. if A=B then (λx :A.e)= (λx :B.e)
4. if a = b then (λx :A.a)= (λx :A.b)
5. if A=B then (Πx :A.C)= (Πx :B.C)
6. if B =C then (Πx :A.B)= (Πx :A.C)

Because of the way in which we defined inductive types, it follows that equality is a
congruence also w.r.t. them if it is w.r.t. the fundamental constructors above.

(8)

Congruence

Equality is a congruence

MLTT, on which HoTT is based, contains

Γ⊢A≡A′ :Ui Γ,x :A⊢B ≡B′ :Ui
Π−form−eq

Γ⊢Πx :A.B ≡Πx :A′.B′ :Ui

Γ,x :A⊢ b ≡ b′ :B Γ⊢A≡A′ :Ui
Π−intro−eq

Γ⊢λx :A.b ≡λx :A′.b′ :Πx :A.B
Γ⊢ f ≡ g :Πx :A.B Γ⊢ a ≡ a′ :A

Π−elim−eq
Γ⊢ f a ≡ g a′ :B[a/x]

Hence judgemental equality is a congruence.

(9)

Congruence

Lemma 3.1 (Transport)
Let P :A→Ui and p :x =A y. Then there is p∗ :P x →P y.
Proof.
Pose

D :≡λx :A,y :A,p :x = y .P x →P y
d :≡λx :A. id(P x)

Thus p∗ :≡ ind=AD d x y p.

(10)

Congruence

Lemma 3.2
If f =Πx :A.B g then f a =B[a/x] g a for every a :A.

Proof.
Let P :≡λh : (Πx :A.B). f a =B[a/x] ha. Let p : f = g .
Then p∗ : f a =B[a/x] f a → f a =B[a/x] g a by Lemma 3.1.
Thus p∗ (reflB[a/x](f a)) : f a =B[a/x] g a.

(11)

Congruence

Apparently, it would be simple to prove also

Lemma 3.3
If a =A b then f a =B[a/x] f b for every f :Πx :A.B.

Proof.
Let P :≡λy :A. f a =B[a/x] f y . Let p :a = b.
Then p∗ : f a =B[a/x] f a → f a =B[a/x] f b by Lemma 3.1.
Thus p∗ (reflB[a/x](f a)) : f a =B[a/x] f b.

The part in red is wrong because P does not type check.
Observe how the proof is correct when f :A→B.

(12)

Function extensionality

Definition 3.4 (Homotopy)
Let f ,g :Πx :A.B. Then a homotopy from f to g is a function of type

(f ∼ g) :≡Πx :A. f x =B g x .

Lemma 3.5
Let f ,g :Πx :A.B. Then there is a term happly such that

happly : (f = g)→ (f ∼ g) .

Proof.
D :≡λy ,z : (Πx :A.B),q :y = z .y ∼ z
d :≡λy : (Πx :A.B).λx :A.refly x

Then happly :≡ ind= (Πx :A.B)D d f g has type (f = g)→ (f ∼ g).

(13)

Function extensionality

Theorem 3.6
Let f ,g :Πx :A.B. Then there is a term funext such that

funext : (f ∼ g)→ (f = g) .

Proof.
By a complex proof due to Voevodsky.

Beware that the proof is not clean: it uses many preliminary results, some of
which may have been proved using function extensionality!
However, it is believed that it can be performed avoiding that principle.

(14)

Congruence

Lemma 3.7
If Πx :A.a =B b then (λx :A.a)=Πx :A.B (λx :A.b).

Proof.
Observe that (λx :A.a)x ≡ a and (λx :A.b)x ≡ b, thus the hypothesis
becomes Πx :A.(λx :A.a)x =B (λx :A.b)x , that is, (λx :A.a)∼ (λx :A.b).
The conclusion follows by Theorem 3.6.

(15)

Congruence

However, as before, the following, apparently natural proof, is wrong:

Lemma 3.8
If A=Ui B and Γ,x :A⊢ a :C then (λx :A.a)=Πx :A.C (λx :B.a).

Proof.
Let P :≡λz :Ui .(λx :A.a)=Πx :A.C (λx :z .a). Let p :A=Ui B.
Then p∗ : (λx :A.a)=Πx :A.C (λx :A.a)→ (λx :A.a)=Πx :A.C (λx :B.a) by
Lemma 3.1.
Thus p∗ (refl(Πx :A.C)(λx :A.a)) : (λx :A.a)=Πx :A.C (λx :B.a).

(16)

Congruence

Lemma 3.9
If A=Ui B and Γ,x :A⊢C :Ui then (Πx :A.C)=Ui (Πx :B.C).

Proof.
Let P :≡λz :Ui .(Πx :A.C)=Ui (Πx :z .C). Let p :A=Ui B.
Then p∗ : (Πx :A.C)=Ui (Πx :A.C)→ (Πx :A.C)=Ui (Πx :B.C) by
Lemma 3.1.
Thus p∗ (reflUi (Πx :A.C)) : (Πx :A.C)=Ui (Πx :B.C).

(17)

Congruence

Lemma 3.10
If Πx :A.(B =Ui C) then (Πx :A.B)=Ui (Πx :A.C).

Proof.
Since B ≡ (λx :A.B)x and C ≡ (λx :A.C)x , the hypothesis becomes
(λx :A.B)∼ (λx :A.C).
Then, by Theorem 3.6, there is t : (λx :A.B)=A→Ui (λx :A.C). Pose

D :≡λy ,z : (A→Ui),q :y =(A→Ui) z .(Πx :A.y x)=Ui (Πx :A.z x)
d :≡λy : (A→Ui).refl(Πx :A.y x)

Observe how d :D y y refly . Thus

ind= (A→Ui)D d (λx :A.B)(λx :A.C)t

inhabits
(Πx :A.B)=Ui (Πx :A.C) .

(18)

Congruence

Equality is a congruence

By Lemmas 3.9, and 3.10, equality =T is a congruence w.r.t. function space
formation for every type T .
By Lemmas 3.2 and 3.3, equality =T is a congruence w.r.t. application when
dealing with non-dependent functions.
By Lemma 3.7, equality =T is a congruence w.r.t. abstraction limited to the
body, i.e., having a fixed domain.

(19)

Substitution

The proofs of Lemmas 3.7 and 3.10 are correct, but they rely on a principle
we have not shown: if a ≡ b then a =T b.
Also, we have shown that judgemental equality is a congruence, but we
omitted to consider types:
■ under the hypotheses of Π−intro−eq, we should prove both
Γ⊢λx :A.b ≡λx :A′.b′ :Πx :A.B and Γ⊢λx :A.b ≡λx :A′.b′ :Πx :A′.B
because Πx :A.B ≡Πx :A′.B.

■ under the hypotheses of Π−elim−eq, we should prove both
Γ⊢ f a ≡ g a′ :B[a/x] and Γ⊢ f a ≡ g a′ :B[a′/x] because B[a/x]≡B[a′/x].

More in general, we would expect that if a ≡ b then C [a]≡C [b].
And we have not yet discussed why Lemmas 3.3 and 3.8 fail.

(20)

Substitution

Lemma 4.1
If Γ⊢ a ≡ b :A then Γ⊢ refla :a =A b.
Proof.
Observe that (a =A a)≡L (a =A x)[a/x] and (a =A b)≡L (a =A x)[b/x], where
≡L means syntactically equal.
Thus Γ⊢ (a =A a)≡ (a =A b) :Ui because ≡ is congruence.
From the hypothesis, we get Γ⊢ a :A and Γ⊢A :Ui by Lemmas 4.2 and 4.3.
Hence Γ⊢ refla :a =A a by =−intro.
Thus Γ⊢ refla :a =A b by ≡−subst.

From Γ⊢Πx :A.a =B b :Ui we can derive Γ,x :A⊢ a =B b, and in turn
Γ,x :A⊢ a :B by Lemma 4.2. Then the missing part in Lemmas 3.7 and 3.10
is immediately obtained by Π−comp and Lemma 4.1.

(21)

Inversion

Lemma 4.2 (Inversion)
1. If Γ⊢ x :T with x a variable, then Γ⊢ x :A by Vble and Γ⊢A≡T :Ui , or
Γ⊢A≡Ui :Uk and Γ⊢T ≡Uj :Uk , i < j < k.

2. If Γ⊢ κ :T with κ a constant, then Γ⊢ κ :A by the corresponding
introduction rule, and Γ⊢A≡T :Ui , or Γ⊢A≡Ui :Uk and
Γ⊢T ≡Uj :Uk , i < j < k.

3. If Γ⊢Ui :T then Γ⊢Ui :Ui+1 by U−intro and Γ⊢T ≡Uj , i < j .
4. If Γ⊢Πx :A.B :T then Γ⊢Πx :A.B :Ui by Π−form, and Γ⊢T ≡Uj , i ≤ j .
5. If Γ⊢λx :A.b :T then Γ⊢λx :A.b :Πx :A.B by Π−intro, and
Γ⊢Πx :A.B ≡T :Ui .

6. If Γ⊢ f a :T then Γ⊢ f a :A by Π−elim, and Γ⊢A≡T :Ui , or
Γ⊢A≡Ui :Uk and Γ⊢T ≡Uj :Uk , i < j < k.

Proof.
It suffices to observe that the last step of a derivation of Γ⊢ t :T is either an
instance of U−cumul or ≡−subst from a premise Γ⊢ t :T ′, or an instance of a
rule introducing the main operator.

(22)

Pieces apart

Lemma 4.3
1. If Γ,x :A,∆ctx then Γctx, and Γ⊢A :Ui .
2. If Γ⊢ a :A then Γctx, and Γ⊢A :Ui .
3. If Γ⊢ a ≡ b :A then Γctx, Γ⊢A :Ui , and Γ⊢ a :A, Γ⊢ b :A.

Proof.
By a long deep induction on the derivations.

(23)

Substitution

Theorem 4.4 (Substitution)
If Γ⊢ a ≡ b :A and Γ,x :A⊢C :B then Γ⊢B[a/x]≡B[b/x] :Ui and
Γ⊢C [a/x]≡C [b/x] :B[a/x].

Proof.
From Γ,x :A⊢C :B, we get Γ,x :A⊢B :Ui , and from Γ⊢ a ≡ b :A we get
Γ⊢ a :A and Γ⊢ b :A by Lemma 4.3.
Then Γ⊢λx :A.B ≡λx :A.B :A→Ui by ≡−refl after Π−intro, so
Γ⊢ (λx :A.B)a ≡ (λx :A.B)b :Ui by Π−elim−eq.
But Γ⊢B[a/x]≡ (λx :A.B)a :Ui by ≡−sym after Π−comp.
Also Γ⊢ (λx :A.B)b ≡B[b/x] :Ui by Π−comp.
Hence Γ⊢B[a/x]≡B[b/x] :Ui by ≡−trans.
Similarly, Γ⊢ (λx :A.C)a ≡ (λx :A.C)b :B[a/x], thus
Γ⊢C [a/x]≡C [b/x] :B[a/x] following the same reasoning.

(24)

Equivalence vs Equality

Hence we solved all the previously listed issues about judgemental equality.
It remains to analyse why Lemmas 3.3 and 3.8 fail.
Using some black magic, one can prove

Lemma 4.5
If Γ⊢Πx :A.B ≡Πx :A′.B′ :Ui then Γ⊢A≡A′ :Ui and Γ,x :A⊢B ≡B′ :Ui .

(25)

Equivalence vs Equality

Suppose Lemma 3.8 holds: if A=Ui B and Γ,x :A⊢ a :C then
(λx :A.a)=Πx :A.C (λx :B.a).
Pose a :≡x and C :≡A and assume A=Ui B.
Then idA =Πx :A.A idB , so Γ⊢ idB :Πx :A.A by Lemma 4.3, thus Γ,x :B ⊢ x :B
and Γ⊢Πx :A.A≡Πx :B.B :Ui by Lemma 4.2.
Hence Γ⊢A≡B :Ui by Lemma 4.5.
However, for example, 1+1= 2 but 1+1 ̸≡ 2. Thus Lemma 3.8 is untenable.

(26)

Equivalence vs Equality

Consider Lemma 3.3: if a =A b then f a =B[a/x] f b for every f :Πx :A.B.
It holds if f :A→B, so assume f to be dependent.
And it is significant when a ̸≡ b, so assume this fact.
Under these constraints, assume Lemma 3.3.
Observe that if t :C and t :D then either C ≡D, or both C ≡Ui and D ≡Uj ,
i ̸= j by Lemma 4.2.
Take f :≡λx :A.reflx :Πx :A.x =A x . Let a =A b.
Then either (a =A a)≡ (b =A b) or (a =A a) and (b =A b) are judgementally
equivalent to distinct universes. The latter case is impossible since
Church-Rosser Theorem holds in the pure calculus, and ≡ implies
convertibility.
Thus, in the pure calculus a converts to b, that is (*) a ≡ b, contradiction.
Therefore, Lemma 3.3 in its full generality is untenable.
(*) This is a consequence of Church-Rosser Theorem in MLTT, which has been
almost proved by the speaker.

(27)

Congruence, again

A notion of equality is a congruence w.r.t. path operations when
■ if p,q :a =A b and p =a=Ab q then p−1 =b=Aa q−1

■ if p,q :a =A b, s :c =A a and p =a=Ab q then s �p =c=Ab s �q
■ if p,q :a =A b, s :b =A c and p =a=Ab q then p � s =a=Ac q � s

Clearly, by Lemma 4.1, this notion makes sense for propositional equality only.

(28)

Congruence, again

Proposition 4.6
If p,q :a =A b and p =a=Ab q then
1. p−1 =b=Aa q−1

2. if s :c =A a then s �p =c=Ab s �q
3. if s :b =A c then p � s =a=Ac q � s

Proof.
Let h :p = q. Pose

D1 :≡λx ,y :a =A b.x = y → x−1 = y−1

D2 :≡λx ,y :a =A b.x = y → s �x = s �y
D3 :≡λx ,y :a =A b.x = y → x � s = y � s
d1 :≡λx :a =A b.reflx−1

d2 :≡λx :a =A b.refls�x
d3 :≡λx :a =A b.reflx�s

then ind(a =A b)Di di p qh for i = 1,2,3 inhabits the various cases.
(29)

Conclusion

The good news:
■ judgemental and propositional equalities are equivalence relations
■ judgemental equality is a congruence w.r.t. type formers
■ judgemental equality, thanks to Lemma 4.1 and Proposition 4.6, is a

(trivial) congruence w.r.t. path operations
■ propositional equality is a congruence w.r.t. path operations

(30)

Conclusion

The bad news: in general, propositional equality is not a congruence w.r.t.
type formers.
However, it is to some extent.

Hence, reasoning with equivalences (≃) is unavoidable in HoTT.
The moral is that there is a small but significant disagreement between the H
(homotopy) and the double T (type theory) in HoTT, that prevents a natural
encapsulation of the homotopical reasoning in the logical/type theoretical one.

(31)

Conclusion

Finally, structural proof-theoretic properties of MLTT play a fundamental role
in the fine analysis of HoTT, see, e.g., Church-Rosser Theorem.
This aspect of HoTT is poorly developed.

More in general, HoTT, in its current stage of development, lacks a clean,
systematic presentation which is, in the author’s opinion, the biggest obstacle
to its study and use.

(32)

References

The main reference is The Univalent Foundation Program, Homotopy Type
Theory: Univalent Foundations of Mathematics, Institute for Advanced Study
(2013), https://homotopytypetheory.org/book.
Martin-Löf type theory is described in Per Martin-Löf, An intuitionistic theory
of types: Predicative part, H.E. Rose and J.C. Shepherdson eds., Logic
Colloquium ’73, Studies in Logic and the Foundations of Mathematics 80,
Elsevier (1975), pp. 73—118.
We suggest also Per Martin-Löf, Intuitionistic Type Theory: Notes by
Giovanni Sambin of a series of lectures given in Padua, June 1980, Studies in
Proof Theory 1, Bibliopolis, Naples, Italy (1984).
The results about Church-Rosser Theorem and Lemma 4.5 can be found in
Marco Benini, Subject Reduction in Multi-Universe Type Theories, M.Benini,
O. Beyersdorff, M. Rathjen, P. Schuster eds., Mathematics for Computation
(M4C), World Scientific (2023).

CC⃝ BY:⃝ $\⃝ C⃝ Marco Benini 2023

(33)

https://homotopytypetheory.org/book

The end

©Marco Benini, Patio in the forest, Seoul

(34)

	Introduction
	Equivalence relation
	Congruence
	Substitution
	Conclusion
	References

