
Homotopy Type Theory
A Gentle Introduction

Dr Marco Benini

marco.benini@uninsubria.it

Dipartimento di Scienza e Alta Tecnologia
Università degli Studi dell’Insubria

25th September 2023

marco.benini@uninsubria.it

Introduction

Homotopy Type Theory, HoTT, is
■ a type system
■ a functional programming language
■ a way to describe higher order logic
■ a way to think ∞-groupoids
■ a way to describe homotopical spaces
■ it claims to be a foundational system
■ a fashion in current Mathematics

(2)

Introduction

HoTT=MLTT+univalence

Syntactically, HoTT is a variant of Martin-Löf type theory enriched with a
complex axiom, univalence.
The syntax allows an interpretation, the Curry-Howard isomorphism, in which
types are read as propositions and terms as their derivations.
The syntax allows an interpretation, which is the focus of this talk, in which
types are homotopy spaces.
Despite the intriguing topological interpretation, which justifies its study,
there is still a lot of research work to pursue, and the foundations of HoTT are
unexplored (and misunderstood) in many essential aspects.

(3)

Martin-Löf type theory

MLTT is based on the notion of judgement

Γ ctx Γ⊢ a :T Γ⊢ a ≡ b :T

We define judgements by induction: judgements are generated by a (large)
collection of inference rules.

It is important to remark that the set of inference rules is open: we may add
new types as far as their associated rules have a quite rigid inductive structure.

(4)

Contexts

ctx−EMP• ctx
Γ⊢A :Ui

ctx−EXT
Γ,x :A ctx

x1 :A1, . . . ,xn :An ctx
Vble

x1 :A1, . . . ,xn :An ⊢ xi :Ai

Variable declaration and use
Hypotheses

(5)

Judgemental equality

Γ⊢ a :A
≡−refl

Γ⊢ a ≡ a :A
Γ⊢ a ≡ b :A

≡−sym
Γ⊢ b ≡ a :A

Γ⊢ a ≡ b :A Γ⊢ b ≡ c :A
≡−trans

Γ⊢ a ≡ c :A
Γ⊢ a :A Γ⊢A≡B :Ui ≡−subst

Γ⊢ a :B
Γ⊢ a ≡ b :A Γ⊢A≡B :Ui ≡−subst−eq

Γ⊢ a ≡ b :B

Conversion, reduction
Definitional equivalence
Computation

(6)

Universes

Γ ctx
U−intro

Γ⊢Ui :Ui+1
Γ⊢A :Ui

U−cumul
Γ⊢A :Ui+1

Γ⊢A≡B :Ui
U−cumul−eq

Γ⊢A≡B :Ui+1

Type of (small) types
Huge source of problems
Unavoidable in HoTT

(7)

Function spaces

Γ⊢A :Ui Γ,x :A⊢B :Ui
Π−form

Γ⊢Πx :A.B :Ui

Γ⊢A≡A′ :Ui Γ,x :A⊢B ≡B′ :Ui
Π−form−eq

Γ⊢Πx :A.B ≡Πx :A′.B′ :Ui

When x is not free in B,
A→B :≡Πx :A.B

Dependent functions
Fibrations
Universal quantifier, implication

(8)

Function spaces

Γ,x :A⊢ b :B
Π−intro

Γ⊢λx :A.b :Πx :A.B
Γ,x :A⊢ b ≡ b′ :B Γ⊢A≡A′ :Ui

Π−intro−eq
Γ⊢λx :A.b ≡λx :A′.b′ :Πx :A.B

λ-abstraction, intensional functions
Implication introduction, forall introduction

(9)

Function spaces

Γ⊢ f :Πx :A.B Γ⊢ a :A
Π−elim

Γ⊢ f a :B[a/x]
Γ⊢ f ≡ g :Πx :A.B Γ⊢ a ≡ a′ :A

Π−elim−eq
Γ⊢ f a ≡ g a′ :B[a/x]

Functional application
Implication elimination, specialisation

(10)

Function spaces

Γ,x :A⊢ b :B Γ⊢ a :A
Π−comp

Γ⊢ (λx :A.b)a ≡ b[a/x] :B[a/x]
Γ⊢ f :Πx :A.B

Π−uniq
Γ⊢λx :A. f x ≡ f :Πx :A.B

β-reduction
η-reduction
Substitution

(11)

Structural rules

The rules so far form the structural part of Martin-Löf type theory.
Open problems:
■ (strong) normalisation
■ structural proof theory
■ computational properties
■ . . .

Everything is almost perfect without universes
Subject reduction fails
Lot of folklore, sometimes unjustified

(12)

Inductive types

■ one formation rule
■ one introduction rule for each constructor

+
■ one elimination rule, coding induction (and recursion)

+
■ one computation rule for each constructor

Formation, introduction, and elimination are constant introductions
Elimination and computation are automatically synthesised
Types and type families

(13)

Dependent pairs

Γ ctx
Σ−form

Γ⊢Σ :ΠA :Ui ,B :A→Ui .Ui

Γ ctx
Σ−intro

Γ⊢ pair :ΠA :Ui ,B :A→Ui ,a :A,b :B a.ΣAB

When x is not free in B,
A×B :≡Σx :A.B

Dependent Cartesian product
Existential quantification and conjunction

Abbreviated writing:
■ Σx :A.B is ΣA(λx :A.B), or ΣAB is Σx :A.B x
■ pairAB ab is abbreviated in (a,b) when A and B are known

(14)

Zero type

Γctx
0−form

Γ⊢ 0 :Ui

Γ ctx
0−elim

Γ⊢ ind0 :ΠP :0→Ui .Πe :0.P e

Empty type
Falsity
Induction is ⊥-elimination

(15)

Unit type

Γctx
1−form

Γ⊢ 1 :Ui

Γ ctx
1−intro

Γ⊢∗ :1
Γ ctx

1−elim
Γ⊢ ind1 :ΠP :1→Ui .Πc1 :P ∗.Πe :1.P e

Γ⊢P :1→Ui Γ⊢ c1 :P ∗
1−comp

Γ⊢ ind1 P c1∗≡ c1 :P ∗

Unit type
Distinguished singleton (!)
Truth
Booleans, 2, are defined similarly

(16)

Natural numbers

Γctx
N−form

Γ⊢N :Ui

Γ ctx
N−intro1

Γ⊢ 0 :N
Γ ctx

N−intro2
Γ⊢ succ :N→N

Γ ctx
N−elim

Γ⊢ indN :ΠP :N→Ui .

Πc1 :P 0.

Πc2 : (Πx :N.Πr :P x .P (succx)).

Πe :N.P e

Peano’s definition
Induction is “proof aware”

(17)

Path spaces

Γ ctx
=−form

Γ⊢= :ΠA :Ui ,a :A,b :A.Ui

Γ ctx
=−intro

Γ⊢ refl :ΠA :Ui ,a :A.a =A a

Identity type family
Equality

=Ax y is written x =A y
We write x = y in place of x =A y when A is understood
reflx abbreviates reflAx when it is known x :A

(18)

Path spaces

Γ ctx
=−elim

Γ⊢ ind= :ΠA :Ui .

ΠP : (Πx :A,y :A.x =A y →Ui).

Πc1 : (Πx :A.P x x (reflAx)).

Πa :A,b :A.Πe :a =A b.P ab e

“strict”, syntactical generation is coded by Streicher’s K-axiom
we want “path-aware” generation

(19)

Homotopy interpretation

Synthetic approach, like Euclid’s geometry vs Descartes’
A type is a space
a :A is a point a in the space A
a =A b is the space of paths in A from a to b
Spaces are formed by points, paths, homotopies, k-paths in general

This interpretation works under one additional principle:

two homotopically equivalent spaces are equal

This is the essence of univalence

(20)

Homotopy interpretation

The homotopy interpretation is synthetic because

k-paths are primitive entities

A point a :A is a 0-path in the space A
p :a =A b is a 1-path in the space A
Observe how p :a =A b is a 0-path in the space a =A b

(21)

Homotopy interpretation

Taken seriously, the homotopy interpretation differs from the standard
interpretation of MLTT.
For example, consider the unit type 1:
■ in the standard interpretation, ∗ :1 is the unique element in 1.
■ in the homotopy interpretation, ∗ :1 is an element of 1 and any other

element x :1 is equal to it, that is, there is a path from x to ∗.
Hence, the ball {x : |x | < r } of radius r in R3 is the unit type.

■ however, the sphere {x : |x | = r } of radius r in R3 is not 1 since there is a
2-path which is not refl.

(22)

Homotopy interpretation

The slogan of the standard interpretation is

equality is identity

while the slogan of the homotopy interpretation is

equality is homotopy equivalence

(23)

Paths

Lemma 5.1 (Path inversion)
For every type A and every x ,y :A there is a function (_)−1 :x =A y → y =A x
such that refl−1

x ≡ reflx .

Lemma 5.2 (Path composition)
For every type A and every x ,y ,z :A there is a function

_ �_ :x = y → y = z → x = z

such that reflx � reflx ≡ reflx for any x :A.

Observe how Lemma 5.1 tells that equality is symmetric and Lemma 5.2 tells that
equality is transitive, Equality is reflexive thanks to =−intro.

(24)

Paths

The interpretation of (propositional) equality x =A y is satisfactory because
■ equality is an equivalence relation
■ equality forms a groupoid w.r.t. path composition

However
■ equality should be a congruence with respect to application, abstraction,

and function spaces formation
■ equality should be preserved by functions

The second fact is true, and it can be proved.
However, equality is not a congruence in the usual sense. It is almost a
congruence, making everything much more complex.

(25)

Functions and functors

Lemma 5.3 (Application; Action on Paths)
Let f :A→B. Then, for every x ,y :A there is

apf :x =A y → f x =B f y

such that apf (reflx)= refl(f x). Usually apf p is written as f (p).

Lemma 5.4 (Functoriality of ap)
Let f :A→B, g :B →C, p :x =A y, and q :y =A z. Then
1. f (p �q)= (f p) � (f q)
2. f (p−1)= (f p)−1

3. f (g p)= (g ◦ f)p
4. idA p = p

So functions are functors in the ∞-groupoid of paths.
Type-theoretically and logically, functions respect equality.
Homotopically, functions are continuous, i.e., they preserve paths.

(26)

Fibrations

Let F :A→Ui , p :x =A y . Then we may think to F as a fibration:

A
x yp

F x

u

F y

p∗u

(27)

Fibrations

Lemma 5.5 (Transport)
Let P :A→Ui and p :x =A y. Then there is p∗ :P x →P y.
We also write transportP(p,_) :≡p∗ :P x →P y .

(28)

Homotopies

Definition 6.1 (Homotopy)
Let f ,g :Πx :A.B. An homotopy from f to g is a point of

f ∼ g :≡Πx :A. f x =B g x

Lemma 6.2
Homotopy is an equivalence relation: the following types are inhabited

Πf :A→B. f ∼ f
Πf ,g :A→B. f ∼ g → g ∼ f

Πf ,g ,h :A→B. f ∼ g → (g ∼ h → f ∼ h)

From now on, we say that P :Ui holds to mean that P is inhabited

(29)

Equivalence

Definition 6.3 (Equivalence)
Given f :A→B, it is an equivalence if the following holds

isequiv(f) :≡ (Σg :B →A. f ◦g ∼ idB)× (Σh :B →A.h ◦ f ∼ idA)

Definition 6.4 (Equivalence type)
Given A,B :Ui , A≃B :≡Σf :A→B. isequiv(f).
We say that A and B are equivalent when A≃B holds

Lemma 6.5
Type equivalence is an equivalence relation.

(30)

Univalence

Lemma 7.1
Given A,B :Ui , it holds

idtoeqv :A=Ui B →A≃B

Axiom (Univalence)
For any A,B :Ui ,

(A=Ui B)≃ (A≃B)

In particular, the axiom states that there is a distinct element

ua : (A≃B)→ (A=Ui B)

which inverts idtoeqv.

(31)

Function extensionality

Lemma 7.2
If f ,g :Πx :A.B then

(f = g)→ (f ∼ g)

However, the converse requires univalence (and it is a complex proof)

Theorem 7.3
If f ,g :Πx :A.B then

(f ∼ g)→ (f = g)

Together, (f = g)= (f ∼ g), which is called function extensionality

(32)

Homotopical interpretation

In the overall, the homotopical interpretation
■ provides HoTT with a strong and powerful guideline
■ allows to derive “natural” results in topological terms
■ is solid and well coordinated with the Curry-Howard isomorphism

However
■ it is “complex” to deal with
■ results are hard to check by hand
■ in the current stage, the link between the logical and homotopy

interpretations has not yet been fully exploited

As a foundational theory, HoTT lacks a systematic development

(33)

Higher Inductive Types

An inductive type generates its elements through induction
Since we are in a world in which paths are the basic elements, why to limit
ourselves to define the generation of points and not consider to control the
generation of paths, too?
This is the idea behind Higher Inductive Types

(34)

Higher Inductive Types

Γ ctx
S1−form

Γ⊢S1 :Ui

Γ ctx
S1−intro

Γ⊢ base :S1

Γ ctx
S1−intro

Γ⊢ loop :base=S1 base

The space S1 contains a distinguished point, base, and a distinguished path,
loop, from base to itself. Induction on S1 says that, given
■ a property P :S1 →Ui
■ a point b :P base
■ a path ℓ :base=P

loop base, from the transport of base along loop in the
fibration P to base

the type P b is inhabited by a canonical term indS1 bℓ.
Hence S1 is the 1-sphere, or the perimeter of a circle, if you prefer

(35)

Higher Inductive Types

Similarly, one can define k-spheres, for any k > 0, the torus, suspensions, cell
complexes, and other topological objects
Also non-topological higher inductive types can be constructed.
Truncations have a special place
Given A :Ui , the truncation ||A|| of A is the type inductively generated by
■ a function |_| :A→||A||
■ for each x ,y : ||A||, a path x = y

One may think to ||A|| as A deprived from its homotopy structure
But, logically, ||A|| is A in classical logic. . .

. . . and this is just the beginning of another story. . .

(36)

References

The main reference is The Univalent Foundation Program, Homotopy Type
Theory: Univalent Foundations of Mathematics, Institute for Advanced Study
(2013), https://homotopytypetheory.org/book.
Martin-Löf type theory is described in Per Martin-Löf, An intuitionistic theory
of types: Predicative part, H.E. Rose and J.C. Shepherdson eds., Logic
Colloquium ’73, Studies in Logic and the Foundations of Mathematics 80,
Elsevier (1975), pp. 73—118.
We suggest also Per Martin-Löf, Intuitionistic Type Theory: Notes by
Giovanni Sambin of a series of lectures given in Padua, June 1980, Studies in
Proof Theory 1, Bibliopolis, Naples, Italy (1984).

CC⃝ BY:⃝ $\⃝ C⃝ Marco Benini 2023

(37)

https://homotopytypetheory.org/book

The end

©Marco Benini, Patio in the forest, Seoul

(38)

	Introduction
	Martin-Löf type theory
	Inductive types
	Path spaces
	Homotopy interpretation
	Equivalence
	Univalence
	Higher Inductive Types
	References

